nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate.
نویسندگان
چکیده
We report the isolation and identification of a new mutation affecting pigment cell fate in the zebrafish neural crest. Homozygous nacre (nac(w2)) mutants lack melanophores throughout development but have increased numbers of iridophores. The non-crest-derived retinal pigment epithelium is normal, suggesting that the mutation does not affect pigment synthesis per se. Expression of early melanoblast markers is absent in nacre mutants and transplant experiments suggested a cell-autonomous function in melanophores. We show that nac(w2) is a mutation in a zebrafish gene encoding a basic helix-loop-helix/leucine zipper transcription factor related to microphthalmia (Mitf), a gene known to be required for development of eye and crest pigment cells in the mouse. Transient expression of the wild-type nacre gene restored melanophore development in nacre(-/-) embryos. Furthermore, misexpression of nacre induced the formation of ectopic melanized cells and caused defects in eye development in wild-type and mutant embryos. These results demonstrate that melanophore development in fish and mammals shares a dependence on the nacre/Mitf transcription factor, but that proper development of the retinal pigment epithelium in the fish is not nacre-dependent, suggesting an evolutionary divergence in the function of this gene.
منابع مشابه
Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest.
Pigment cells of the zebrafish, Danio rerio, offer an exceptionally tractable system for studying the genetic and cellular bases of cell fate decisions. In the zebrafish, neural crest cells generate three types of pigment cells during embryogenesis: yellow xanthophores, iridescent iridophores and black melanophores. In this study, we present evidence for a model whereby melanophores and iridoph...
متن کاملZebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates.
Waardenburg-Shah syndrome combines the reduced enteric nervous system characteristic of Hirschsprung's disease with reduced pigment cell number, although the cell biological basis of the disease is unclear. We have analysed a zebrafish Waardenburg-Shah syndrome model. We show that the colourless gene encodes a sox10 homologue, identify sox10 lesions in mutant alleles and rescue the mutant pheno...
متن کاملFoxd3 controls melanophore specification in the zebrafish neural crest by regulation of Mitf.
We describe a mechanistic model whereby Foxd3, a forkhead transcription factor, prevents neural crest-derived precursors from acquiring a melanophore fate. Foxd3 regulates this fate choice by repressing the mitfa promoter in a subset of neural crest cells. mitfa is only expressed in a Foxd3-negative subset of neural crest cells, and foxd3 mutants show an increase in the spatial domain of mitfa ...
متن کاملMelanophore sublineage-specific requirement for zebrafish touchtone during neural crest development
The specification, differentiation and maintenance of diverse cell types are of central importance to the development of multicellular organisms. The neural crest of vertebrate animals gives rise to many derivatives, including pigment cells, peripheral neurons, glia and elements of the craniofacial skeleton. The development of neural crest-derived pigment cells has been studied extensively to e...
متن کاملLeukocyte Tyrosine Kinase Functions in Pigment Cell Development
A fundamental problem in developmental biology concerns how multipotent precursors choose specific fates. Neural crest cells (NCCs) are multipotent, yet the mechanisms driving specific fate choices remain incompletely understood. Sox10 is required for specification of neural cells and melanocytes from NCCs. Like sox10 mutants, zebrafish shady mutants lack iridophores; we have proposed that sox1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 126 17 شماره
صفحات -
تاریخ انتشار 1999